Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping

نویسندگان

  • W. Friedland
  • E. Schmitt
  • P. Kundrát
  • M. Dingfelder
  • G. Baiocco
  • S. Barbieri
  • A. Ottolenghi
چکیده

Track structures and resulting DNA damage in human cells have been simulated for hydrogen, helium, carbon, nitrogen, oxygen and neon ions with 0.25-256 MeV/u energy. The needed ion interaction cross sections have been scaled from those of hydrogen; Barkas scaling formula has been refined, extending its applicability down to about 10 keV/u, and validated against established stopping power data. Linear energy transfer (LET) has been scored from energy deposits in a cell nucleus; for very low-energy ions, it has been defined locally within thin slabs. The simulations show that protons and helium ions induce more DNA damage than heavier ions do at the same LET. With increasing LET, less DNA strand breaks are formed per unit dose, but due to their clustering the yields of double-strand breaks (DSB) increase, up to saturation around 300 keV/μm. Also individual DSB tend to cluster; DSB clusters peak around 500 keV/μm, while DSB multiplicities per cluster steadily increase with LET. Remarkably similar to patterns known from cell survival studies, LET-dependencies with pronounced maxima around 100-200 keV/μm occur on nanometre scale for sites that contain one or more DSB, and on micrometre scale for megabasepair-sized DNA fragments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Track detection on the cells exposed to high LET heavy-ions by CR-39 plastic and terminal deoxynucleotidyl transferase (TdT)

Background: The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer (LET) level. The distribution of ionizing radiation is sparse and homogeneous for low LET radiations such as X or γ, but it is dense and concentrated for high LET radiation such as heavy-ions radiation. Material and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/...

متن کامل

تخمین آسیب DNA بافت بدن ناشی از دز تابش‌های یونیزان در میدان‌های بزرگ شتاب‌دهنده خطی 6 مگاولتی فوتونی

Recent studies suggest that relative biological damage (RBD) may change from in to out of field regions for 6 MV photon beams. In this study RBD was calculated in and out of field of 30x30 cm2 and 40x40 cm2 6 MV clinical photon beams including low energy slowing down electrons in track length estimated method. Varian 2100C/D linear accelerator was simulated using MCNPX code. Electron and photon...

متن کامل

The Comparison of the shares of stopping power in a soft tissue-equivalent material

Introduction: Proton therapy is a type of radiation treatment that it uses protons to treat cancer. Because of the protons’ unique ability to distribute the radiation dose more directly to the tumor, it minimizes the damage to nearby healthy tissues. The rate of energy loss by the ion in the target is called stopping power. The total stopping power is sum nuclear and electroni...

متن کامل

The role and mechanisms of zinc oxide nanoparticles in the improvement of the radiosensitivity of lung cancer cells in clinically relevant megavoltage radiation energies in-vitro

Objective(s): Semiconductor zinc oxide nanoparticles (ZnO NPs) have unique properties, such as inherent selectivity and photosensitization effects under ultraviolet (UV) radiation. ZnO NPs serve as promising anticancer agents. However, UV radiation limits their penetration into the body. In most clinical settings, it is essential to use high-energy photons in the treatment of deep-seated tumors...

متن کامل

The biological effects induced by high-charged and energy particles and its application in cancer therapy

The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017